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ABSTRACT

We present the computational methods we have de-
veloped for simulation of the aerodynamics of a para-
trooper during the time period following immediately
after the paratrooper jumps from a cargo aircraft. These
methods can also be used for the aerodynamic simula-
tion of a payload, such as a crate of emergency aid or
a ground vehicle, being dropped from the rear door of
a cargo aircraft. These are applications with major sig-
nificance in the area of airdrop technology. "In both of
these cases, the computational challenge is to predigt
the dynamic behavior and path of the object separating
from the aircraft, so that this early stage of the deploy-
ment process is successful. The methods we developed
to address this challenge are based on the Deforming-
Spatial-Domain/Stabilized Space-Time formulation, ad-
vanced mesh update methods, and parallel computing
on distributed memory parallel supercomputers. The
preliminary results for the paratrooper deployment and
cargo drop demaonstrate that these methods can poten-
tially play a major role in simulation of airdrop systems.
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INTRODUCTION

When a cargo aircraft with relatively new design
is put into operation, the aerodynamic interaction
between the aircraft and a paratrooper separating
from that aircraft becormnes a very relevant issue in
terms of successful and effective deployrnent of para-
troopers. In this paper, we consider a single para-
trooper exiting the aircraft. The purpose is to cal-
culate the path of the paratrooper relative to the
aircraft, after his exit from the aircraft but prior
to the opening of the parachute, while being sub-
jected to aerodynamical forces in addition to grav-
ity. This simulation was first reported in.! An im-
proved geometric model for the aircraft, with wing
flaps and winglets, was reported in.? The compu-
tation with this improved model of the aircraft and
a more realistic model of the paratrooper was re-
ported in.? The simulation is based on solving the
Navier-Stokes equations of incompressible flows for
flow around both the aircraft and the paratrooper
while their relative positions are changing, coupled
with solving the equations of motion for the para-
trooper. A related problem with very similar com-
putational challenges is separation of a large pay-
load, such as a crate of emergency aid or a ground
vehicle, being dropped from the rear door of a cargo
aircraft. The Deforming-Spatial-Domain/Stabilized
Space-Time (DSD/SST) formulation*® is used for
solving this class of problems where the spatial do-
main occupied by air is changing in time.
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The DSD/SST formulation was developed as a
general-purpose tool for computation of flows with
moving boundaries and interfaces, such as two-fluid
and free-surface flows and fluid-structure and fluid-
object interactions. This method, inherently, takes
into account the motion of the boundaries and in-
terfaces. At each time step of a computation, the
locations of the boundaries and interfaces are calcu-
lated as part of the overall solution.

Stabilized space-time finite element formulations
were used earlier by other researchers in the context
of problems with fixed spatial domains {see for ex-
ample”). The DSD/SST formulation is based on the
Galerkin/Least-Squares (GLS) formulation.® The
Streamline-Upwind /Petrov-Galerkin  (SUPG)®1?
ans Pressure-Stabilizing/Petrov-Galerkin (PSPG)*
formulations are the essential components of the GLS
formulation. When these stabilized formulations are
implemented with a sound understanding of their
undetlying concepts, flows at high Reynolds num-
bers can be computed without introducing exces-
sive numerical dissipation, and equal-order interpo-
lations functions for velocity and pressure can be
used to simplify the implementation.

Another component of the DSD/SST formula-
tion is an automatic mesh moving technigue, which
is used for updating the mesh as the spatial domain
occupied by the fluid changes its shape every time
step. This mesh moving method, first introduced
in,!! is based on moving the nodal poirts as governed
by the equations of linear elasticity. The motion of
the internal nodes is determined by solving these
additional equations, with the boundary conditions
for these mesh motion equations specified in such
a way that they match ihe normal velocity of the
fluid at the solid surface. Reducing the frequency of
remeshing is the most important consideration taken
into account in the development of the mesh mov-
ing method. We have developed and implemented a
number of ideas to that end, such as giving smaller
elements more protection against excessive element
distortion, as originally reported in.!!

Discretization of the class of problems addressed
here results in large, coupled nonlinear equation sys-
temns that need to be solved at every time step. The
coupling between the blocks of equations correspond-
ing to the Navier-Stokes and mesh moving equations
are handled in an iterative fashion. At each non-
linear iteration, the vectors of unknowns associated
with these twe blocks of equations are updated in-
dividually, based on the Newton-Raphson method.
While updating the vector of unknowns associated
with one of the blocks, we use the most recently up-
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dated values of the vectors of unknowns associated
with the other block. The coupled, linear equation
system that needs to be solved in updating each of
the two vectors of unknowns is also solved iteratively,
with the GMRES search technique.'® We have im-
plemented these solution technigues for distributed-
memory parallel computing, and the results reported
here were obtained by carrying out the computations
on 2 CRAY T3E-1200.

In this paper, we first review the governing equa-
tions and the DSD/SST formulation. Then we de-
scribe the mesh update techniques used in conjunc-
tion with the DSD/SST formulation, and present re-
sults from preliminary computations. Examples pre-
sented are parairooper deployment and cargo drop
from a transport aircraft.

GOVERNING EQUATICONS

Let §2, ¢ R" be the spatial fluid mechanics
domain with boundary I’y at time ¢ € {0,T), where
the subscript ¢ indicates the time-dependence of the
spatial domain and its boundary. The Navier-Stokes
equations of incompressible flows can be written on

Q, and ¥t € (0,T) as

n
p(?a?‘i-u-Vu--f)-—V-a' =0, (1)
V-u =0, (2}

where p, u and f are the density, velocity and the
external force, respectively. The stress temsor & is
defined as

o(p,u) = —pl + 2ue(n). (3)

Here p, I and p are the pressure, identity tensor and
the viscosity, respectively. The strain rate tensor
£(u) is defined as

£(u) = % ((Fu) + (Vo)) . (4)

Both Dirichlet- and Neumann-type boundary condi-
tions are accounted for:

7n = gOIl (I‘:)g,
n-¢ = hon ([)s. ()

Here (I';})g and {[:)s are complementary subsets of
the boundary I';, n is the unit normal vector at
the boundary, and g and b are given functions. A
divergence-free velocity field is specified as the initial
condition.




DEFORMING-SPATIAL-DOMAIN/
STABILIZED SPACE-TIME (DSD/SST)
FORMULATION

In discretization of the space-time domain, the
time interval (0, T} is partitioned into subintervals
Ii = (tn.tny1), where £, and #,,4, belong to an or-
dered series of time levels 0 =25 < 8y - - <ty = T.
Let 2, =, and T, = Ty, to simplify the notation.
The space-time slab (},; is defined as the domain en-
closed by the surfaces Q,,, Qp,4.1, and F,, where P, is
the lateral surface of Q). described by the boundary
I'; as t traverses I, (see Figure 1).
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Figure 1. Space-time concept.

The Dirichlet- and Neumann-type boundary con-
ditions are specified over {Py)g and (Pn)s. For this
discretization, the finite element trial function spaces
(8%)n for velocity and (8%),, for pressure, and the
corresponding test function spaces (Vi ), and (V})n
are defined as follows:

(Si)n =
fubfu € [H*(Qn)" ¢, u" = g" on (Pa)g},  (6)

(v-}i)n =
{whlw” € [H*MQu)]" =, wh = 00n (Pa)g}, (7)

('S;.)ﬂ = (Vg)n = {thqh € th(Qn)}- (8)

Here H'*(Q.,) is the finite-dimensional function space
over the space-time slab @Q,. Over the element do-

main, this space is formed by using first-order poly-

nomials in both space and time. The interpolation

functions are continuous in space but discontinuous

in time.
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The DSD/SST formulation is written as follows:
given (u”);, find u* € (S4), and p* € (82), such
that Yw* € (VA)n and ¢* € (VP)a:

h
wh -p(9'1—+u"-vu’*—fh) dQ
Qn ot

/ e(w") : a(p" uh)dQ

- [ wh . hhdP
(Pn)h

+ f ¢"V - utdQ
Q

4

+ [ e - @h7)de
0n

(ﬂul)n

v Y [ Emepghwh.
e=1 A 4

[L(phauh) - pfh] aQ
Mg}
+ Z[ TisieV - WhPV . uth
e=1YQ%

= 9, (9)
where
Lig* wh) =
dwh A A B h
P —"'é't""l"ll -Vwh | -V -a(g*,w"). (10}

This formulation is sequentially applied to all
space-time slabs Qo,@1,@2,..-,@N-1. The com-
putation starts with

(11)

Here msme ahd Tugic are the stabilization parameters
(see?!®). For an earlier, detailed reference on this
stabilized formulation see.*

(u¥)g =uy, V-ug=0 on Q.

MESH UPDATE METHOD

In application of the the DSD/SST method to
flows with moving objects, as the computations pro-
ceed, the mesh needs to be updated to accommodate
the changes in the spatial domain occupied by the
finid. This needs to be accomplished as efficiently
as possible, and without compromising the accuracy
of the solution. Selection of the way to update the
mesh would depend on the geometric complexity of
the moving objects, the complexity of the overall
problem geometry, and how the initial mesh was gen-
erated. In general, the mesh update could have two




components: moving the mesh for as long as possi-
ble and remeshing (i.e. generating fully or partially
a new set of nodes and elements) whenever the ele-
ment distortion becomes too high.

Most real-world problems involve complex ge-
ometries. A complex geometry typically requires an
gutomatic mesh generator. Barlier we developed our
own automatic mesh generator so that we could have
a number of special features, such as structured lay-
ers of elements around solid surfaces and high-speed
mesh generation. This automatic, 3D mesh gener-
ator is described in.!? It has been used very effec-
tively in Jarge a number of simulations (for early
examples see!'13). With this mesh generator, with
its capability to build structured layers of elements
around solid objects with reasonable geometric com-
plexity, we can fully control the mesh resolution near
solid objects. This feature can be used for more ac-
curate representation of the boundary layers. The
mesh generator also has the capability to generate
meshes for fluid-object interactions in spatially pe-
riodic flows {see%).

Automatic mesh generation might become a pro-
hibitively costly task when the number of elements
becomes very large or when the frequency of remesh-
ing has to be high. As an alternative, sometimes,
special-purpose mesh generators could be designed
specifically for a certain class of problems. Depend-
ing on the complexity of the probiem, this alterna-
tive might involve a high initial design cost, but then
the mesh generation cost becomes minimal. In fact
we selected this path in a number of our earlier sim-
ulations and were able to overcome the mesh gener-
ation issues very effectively (see for example!?).

In mesh moving, on a solid surface the normal
velocity of the mesh has to match the normal ve-
locity of the fluid. Provided that this condition is
satisfied, the mesh can be moved in any way de-
sired, with the main objective being to reduce the
frequency of remeshing. The cost of automatic 3D
mesh generation is a major reason for trying to re-
duce the frequency of remeshing. Furthermore, after
every time we remesh, we need to project the solu-
tion from the old mesh to the new one. Not only
does this intreduce projection errors, but the com-
puting time consumed by this projection is rather
significant in 3D simulations. All these factors make
a strong case for designing mesh update techniques
that reduce the frequency of remeshing.

In some cases, when the changes in the shape
of the fluid domain allow it, a special-purpose mesh
moving method can be used in conjunction with a
special-purpose mesh generator. Then the simula-
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tions can be carried out without solving any addi-
tional equations to determine the motion of the mesh
and without remeshing. One of our earliest simula-
tions in this category, 3D computation of sloshing in
a vertically vibrating container, can be found in.*®

For general-purpose mesh moving, we developed
an automatic mesh moving technique,'! where the
nodal motions are governed by the equations of elas-
ticity. The motion of the internal nodes is deter-
mined by solving these additional equations, with
the boundary conditions for these equations speci-
fied in such a way that they match the normal ve-
locity of the solid surface.

The special mesh update method developed for
the paratrooper deployment and payload drop is
based on automatic mesh moving and remeshing as
needed. However, the mesh moving and remeshing
is limited to a mesh zone around the paratrooper
or payload and covering their expected trajectory.
The equations of elasticity are solved only for the
nodes in this zone, and when the mesh distortion in
this zone becomes too high, remeshing takes place
only in this zone. This approach significantly re-
duces the computational cost associated with mesh
moving and remeshing.

SIMULATIONS

The aircraft is traveling at 130 knots, with an
angle of attack of 10 degrees. For simulations of a
paratroopet jumping from a side door, we assume
symmetry with respect to the vertical plane passing
through the middle of the aircraft. For the payload
drop, we model the full aircraft. The original aircraft
model was introduced in.! Here we use an improved
version of that model by including the wing flaps and
winglets. In defining the parameters of the problem
with non-dimensional numbers, the length of the air-
craft {nose to tail wingtip) is taken as 8.81 units, and
the free-stream velocity as 1.00 unit. The boundary
conditions are uniform upstream velocity, no-slip on
the aircraft surface, zero normal velocity and zero
shear stress at the crossflow and side boundaries, and
a traction-free condition at the outflow boundary.
For the engines, the intake and exhaust flow velocity
profiles are assumed to be uniform, and prescribed
as 1.0 and 3.0, respectively. No-slip conditions are
used on the surface of the paratrooper and payload.
The tetrahedral mesh used in the paratrooper de-
ployment simulation has 129,090 nodes and 728,902
elements, while the mesh used in the cargo drop sim-
ulation has 332,498 nodes and 1,952,559 elements.




We realize that these mesh refinement levels are be-
low the levels required to secure quantitatively de-
pendable solutions for the complex flow problems we
are addressing here. However, we see these prelim-
inary computations as demonstrations of the tools
we have been developing for this class of problems,
and also as a way of having a general, qualitative
understanding of the solution in each problem. The
parallel computations were carried on a CRAY T3E-
1200. Figure 2 shows the aircraft and the para-
trooper in the early stages of the separation. Fig-
ure 3 shows the close up view of the flow field around
the paratrooper. Figure 4 shows the payload as it
exits through the cargo door.

CONCLUDING REMARKS

We described the computational methods we have
developed for simulation of the aerodynamics of a
paratrooper during the time period following imme-
diately after the paratrooper jumps from a cargo air-
craft. Although the paratrooper deployment was our
main purpose in developing these methods, they can
also be used for simulation of related problems with
very similar computational challenges such as sep-
aration of a large payload being dropped from the
rear door of a cargo aircraft. The payload can, for
exarnple, be a crate of emergency aid or a ground ve-
hicle. The computational methods are based on the

Deforming-Spatial-Domain /Stabilized Space-Time for-

mulation, advanced mesh update methods, and par-
allel computing on distributed memory parallel su-
percomputers. With the results we obtained from
our preliminary computations for the paratrooper
deployment and cargo drop, we demonstrated that
these methods can potentially play a major role in
simulation of airdrop systems. Also as a result of
this work, we were able to gain some understand-
ing of the main features of the dynamics and fluid
mechanics involved in the problems addressed.
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Figure 2. Paratrooper separation from the aircraft. The colors on the paratrooper and aircraft surface show
the air pressure distribution.
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Figure 3. Flow around the paratrooper. The streamlines and the air pressure distribution on the paratrooper.

Figure 4. Payload exiting through the cargo door. The stream ribbons and the air pressure distribution on
the aircraft and payload surfaces.
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